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Washington, D.C.

Thermal Joint Conductance Research Review and Planning Conference

9:00 -

9:15 -

10:00 -

February 19, 1964

AGENDA
9:15 a,.m, Welcome and Introduction
9:30 a.m, Brief Summary of Status of Government, University

and Industry Research on Thermal Conductivity across
Unbonded Joints in the High Vacuum Environment of
Space - Conrad P. Mook - OART

10:00 a.m. Contract Efforts on Thermal Interface Conductance -
Harry L. Atkins - MSFC

ABSTRACT

The past year's efforts under NASA Contract NAS8-5207 (General
Electric Company, Mr. Erwin Fried) will be discussed. Slides
will be used to show the equipment, test samples, and data
plotted on graphs., This contract will be briefly compared
with other work in the area of thermal interface conductance,

Next year's efforts under this contract will be discussed.

10:30 a.m, Model Studies in Conjunction with the Behavior of
Thermal Interface Conductance - Harry L. Atkins - MSFC

ABSTRACT

Three models will be discussed in which their deformations as a
function of loading is shown to be similar to the change of thermal
interface conductance vs. loading. Slides will be used to show the
deformed models and graphs of existing interface data. Some con-
clusions as to the nature of thermal intérface conductance will be
drawn from these deformed models,

One of the most complete bibliographies will be given in which some
previously unknown Russian references will be presented.

10:30 - 10:45 a.m. BREAK




10:45 -

11:15 -

12:30 -

1:30 -

11:15 a.m. Measurements of Thermal Contact Conductance in a
Vacuum - W, E, Kaspareck & R, M, Dailey - MSFC

ABSTRACT

The apparatus used in obtaining experimental results of thermal
contact conductance for metallic joints ranging in surface
finish from 5 to more than 200 micro-inch CLA (Center Lime
Average) with contact pressures ranging from 3 to 70 Kg/cm

(40 to 1000 psi) is described.

Experimental results for the following materials are presented:
6061 T6 Aluminum, Casting Alloys Magnesium AZ91C, Almag 35 and
Aluminum 356. Combinations of these materials expected in the
Saturn program were tested. The addition of an interstitial
material, i.e.,, high vacuum silicone grease was evaluated and
the results are presented,

Detailed descriptions of the provisions made for the avoidance
of radiation heat losses and the attempts made to improve measure-
ment accyracies are given,

12:30 p.m. Discussion of Research in Thermal Contact Resistance
at Lewis and Goddard
Ralph Sommers - Lewis Research Center
Aaron Fisher - Goddard Space Flight Center
1:30 p.m. LUNCH
2:30 p.m, Thermal Joint Conductance - Dr, J. M. F, Vickers - JPL

ABSTRACT

The work of Drs. A, M. Clausing and B, T. Chao of the University
of Illinois under a NASA Research Grant, for which Jet Propulsion
Laboratory was the technical monitor, will be described,

Many limitations are noted when an attempt is made to apply the
available information on joint conductance to practical bolted
or riveted joints,

A correlation of information from the literature on joint con-
ductance has been prepared.

The problem of applying the uniform pressure information to an

actual bolted joint by 1) carrying out a stress analysis of simpli-
fied models of bolted joints, and 2) determining the conmstriction
effect of a region with variable joint conductance is being attacked.

Apparatus is presently under construction with which data can be
generated to be compared with the results from the above analyses.
Experimental investigation of certain other effects in joint con-
ductance which have been largely neglected in the past will also
be carried out,




2:30 - 4:30 pem. Round Table Discussion on Future Research

i.
2,

3.
4,

L]
- ’

Theoretical Analyses of Laboratory Results

The Transient Pressure Problea

a. The Ascent Environment

b. Potential Usefulness as Thermal Switching
Device

The need for Flight Experiments

The need for messurement standards.

4:30 p.m, Ad journ

BOTH MEETINGS WILL BE HELD AT 600 INDEPENDENCE AVENUE, S.W., FEDERAL OFFICE

BUILDING 10B, ROOM 6032.



CONFERENCE NOTES

During the first half of 1964, a series of conferences was
held at NASA Headquarters in Washington, dealing with research
leading to advancements of the state-of-the-art in the thermal
design of space vehicles. Of major importance in this program
is research aimed at reducing uncertainties in the heat trans-
fer which can be assumed to take place across unbonded joints
in the vacuum environment of outer space.

This volume consists of four of the reports presented in
the conference on Thermal Joint Conductance which was held in
NASA Headquarters in Washington, D. C., on February 19, 1964,
as a part of the series.

Some delay was encountered in publishing this volume due
to efforts to overcome the need for more reproducible copy.
This difficulty has not been alleviated and passage of time
necessitates publication "as-is” with apologies to recipients
who, it is hoped, will find the papers presented herein to be
a useful summary.

The round-table discussion was held. as outlined in the
agenda, with positive agreement reached as to the importance

of continued research in this area, emphasizing further the need

for transient data and flight experiments.

'C. P. Mook
NASA Headquarters
washington, D. C.
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RESULTS OF CONTRACT NAS 8-5207
"THERMAL CONTACT CONDUCTANCE IN A
VACUUM' :AND RELATED PARAMETER STUDY
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INTRODUCTION

This paper shows the results of an in-house and contractual
effort to better define the parameters associated with thermal contact
conductance. Data for contact conductance vs. applied pressure, and
the corresponding graphs are shown for samples of 304 Stainless Steel,

AZ31 Magnesium, 6061-T6 Aluminum and Copper.

For a more thorough discussion of the contractual work, the
reader is referred to the final report of this contract (NAS8-5207). A
paper covering the results of this contract will also be presented at
the AIAA 1st Annual Meeting and Technical Display June 29-July 1964,
at the Sheraton Park Hotel, Washington, D.C.

In addition to the contractual interface data, an attempt is made
to define the observed change of slope of 6061 -T6 and 2024-T4 Aluminum
when the data are plotted on log-log graph paper. It is shown that by
deforming cones, hemispheres, and ellipses, a similar change of slope
occurs. It is concluded that these models might possibly represent
"gcale -up'' replicas of the macroscopic points of contact of two mating

aluminum surfaces.

A reference list is included which ig a revision and extension
of the bibliography the author handed out at the February meeting. It

contains many previously unknown Russian references.
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= EXPERIMENTAL PROGRAM "

A study of the problems in the early stages of the thermal con-
tact conductance work, has indicated a need for experiments designed
to (1) aid in the understanding of the heat transfer mechanism, (2) pro-
vide data to verify existing ana'yses, (3) provide data to aid in the de-

velopment of new analytical methods.

Subsequently, a thermal contact conductance apparatus suitable
for use in vacuum was developed which would permit accurate measure-
ment of thermal conductance as a function of contact pressure. As
opposed to the flat plate apparatus used in the investigations reported
by Fried, the principal investigator of this study, this apparatus utilized

cylindrical columns to minimize flatness deviations under load.

Thermal Test Apparatus

A schematic of the test apparatus is shown in Fig. 1. Figure 2
shows the heat flow section of the apparatus, with a specimen in place,

without the radiatiqn shield.

The samples consisted of two metallic cylinders having a diameter
of 5.08 cm (2 in.), and a length of 7.62 cm (3 in.) each. Each sample
was instrumented with four copper constantan thermocouples to determine
the axial temperature gradient due to the uniform heat flux passing be-

tween the electric heater and the liquid-cooled sink.

Contact pressure could be varied by means of a stainless steel
bellows, pressurized in accordance with the desired load. The load was

measured using a strain gage load washer on the heat sink side (Fig. 1).
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The entire assembly was installed in a bell jar vacuum system
with a right angle cold trap, utilizing a 4 -inch oil diffusion pump pre-
ceded by a roughing pump to achieve a vacuum of 10" mm Hg (1.33

H
x iU ncwton/mz) or better.

The heat source utilized in this test was a 100-watt electric
resistance element embedded in the main heater assembly which is
gaurded by a ring heater and a rear guard heater, as shown in Fig. 1.
This system is arranged such that there exists no temperature difference
Letween the main heater and the guards. Each is separately controlled,
60 that 111 thermal energy from the main heater has only one direction
to go  nto the test sample. In order to monitor this system, thermo-

couples were fastened to the several surfaces seeing each other.

Minimum cross-sectional area supports, made of tubes (Fig. 1),
were nsed between the rear guard and the main heater, in order to
minimize heat leak errors, even though the facing surfaces were kept
at the same temperature. The desired range of temperature differences
betweern potential heat lead points were kept at AT's of 1°C or less
in order not to exceed 1/2 of 1% heat flow errors. Initially, these
temperature differences were controlled by use of a deviation amplifier,
bt eaptiience indicated that manual control, with proper judgment,

resuited in less time delay between steady-state points.

The allowable temperature differences were dictated by the
amount of heat passing through the test sample, since high heat fluxes
through the sample permitted higher heat losses from the heater while

permitting the percentage losses to remain the same.




The heat flux was determined by measuring the regulated d-c
power ‘input (i.e., voltage and current), using precision instruments.
In addition to this, the hot heater resistance wag obtained by momen-
tarily turning off the power. In order to eliminate leadline losses in
the calculation, the ratio of heater winding resistance to total system
resistance was measured and a correction applied to all readings. An

ESI bridge having an accuracy of % 0. 05% was used.

A check was performed on the adequacy of the heat flow measure-
ment by determining the thermal conductivity of a piece of ARMCO
iron. The measured value came within 2% of the nominal value which,
considering all possible variables, is quite good. If we were to per-
form only thermal conductivity measurements, this accuracy could
probably be improved. However, for conductance measurements, with
their many sources of error, the cost of improving this system is not

quite worth the effort at present.

Temperature Measurement

Considerable attention was paid to accurate temperature
measurement techniques in order to minimize possible measurement
errors, since the quality of vthe temperature measurement directly
affected the quality of the interface thermal contact conductance obtained.
Thermocouple junctions were made of 40-gauge copper -constantan pre-
cision grade thermocouple wire. This grade of wire has a nominal
tolerance of + 0. 3°C over the range of interest, but has been found by
experience to be considerably better. Junctions were made by mercury

pool arc welding techniques.
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The thefmocouples were installed in the test samples in 2.54-
cm deep holes, to place the junction at the cylinder axis. The junction
was embedded with Eccobond 56C, an epoxy base cement having a
thermal conductivity equal to that of stainless steel. In order to assure
that the thermocouple bead actually contacted the sample at the cylinder
centerline, a 0.33-cm diameter hole was drilled at the desired axial
thermocouple location and a tube of the same material as the sample
was inserted with the thermocouple installed. This method had the
advantage that there was less likelihood of drill runout when the hole
was drilled. It also permitted more positive installation and location
of the thermocouple junction. The only exception to the matching of
material was that an aluminum tube was used with the magnesium
sample. This was not expected to result in an error because: (1) the
thermocouple junction was in contact with the sample magnesium, and
(2) the thermal effect of different material was not adverse because of
the higher thermal conductivity of the aluminum. This would not result

in a delay to reach thermal equilibrium.

The choice of 40-gauge thermocouple wire was dictated by the
desire to minimize conduction losses. Experience with several hundred
thermocouples from such wire (purchased from Thermo-Electric Co.)
with no adverse emf characteristics led to the selection of this diameter.
The question as to the proper response of the thermocouples when
embedded in the samples in a vacuum was circumvented by use of the
Eccobond 56C, a fairly free-flowing epoxy cement inserted and packed
around the thermocouple bead and wire. Thus, the bead was hermetically

isolated from the surrounding atmosphere.
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To assure proper response of these thermocouples, they were
placed in a constant temperature oven after being installed in the
sample and the consistency of the temperature readings was checked.
Out of over 60 thermocouples tested, only 4 were found to require
corrections in the computation of conductances for the range of temper-
atures of interest (25-50°C). Particular attention was paid to the
precision with which the axial distance s. between thermocouples were
controlled, since the axial distance vs. temperature plots were used
to project the temperature gradierits to the interface and thus obtain

the interface temperature difference.

The constriction resistance effects at and near the interface
require that thermocouples be located in the undisturbed region in
order to correctly project the temperature gradient. Since only the
sample half interfaces are of interest, the heat source and heat sink
interfaces with the samples had high vacuum silicone grease applied as
a heat transfer promoting device. Thus, no significant constriction

effects resulted at these interfaces.

The temperéture difference, AT , is based on the temperature
obtained experimentally, which are then extrapolated to the interface.
The accuracy with which this AT can be obtained is a function of the
accuracy with which the temperature gradient i{l the sample can be
obtained. For high values of contact conductai,gées the AT usually
was quite low. Conversely, for low values of céhductance the AT
was high. Since a high AT resulted in a higher percent accuracy,
the relative percent accuracy of contact conductance obtained was

constant. A representative temperature gradient curve is shown in



Fig. 3. Of the thermocouples used in the samples, each had its own
cold junction. Their emf was read on a Leeds and Northrop K-3
potentiometer, with individual couples switched by means of a transfer
switch. Figure 4 shows the vacuum system, thermocouple recorder,

power supply, and instrument panel.

Surface Finish Measurements

One significant area of interest, which strongly affects the
thermal contact resistance is the surface finish of the interiace.
Surface finish, by definition, can include surface roughness as well
as waviness, which is described by Clausing and '"'microscopic and
macroscopic effects,' and by Fenech as ''primary and secondary

waviness. "

In addition to the small asperities which constitute the rough-
ness, a machines surface can have larger peaks and valleys which
constitute the waviness. The direction parallel to the ridges and

valleys of the waviness is called the lay direction,

A Taylor -Hobson "Talysurf" stylus type profilometer was used
to obtain single-line profiles of the various surface finishes prepared
to this program. Due to difficulties of operating an in-house "Talysurf"
instrunent, all but one pair of samples (Nos. 15 and 16) were inspected
after thermal contact conductance tests were completed. Thus, any
deformation of asperities, which may have taken place during tests
would, therefore, be observable. However, it is not very likely that
any such effects could be observed, because the "Talysurf' trace is
merely the record of a stylus motion fellowing the contours of the

surface in a straight line.

' \
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Any asperity, deformed or otherwise, on either side of this
straight line would, therefore, not be recorded. Although there is no
certainty that a trace parallel to or in continuation to an existing trace
will resemble the existing trace, there will be a similarity of char-
acteristics, provided the character of the surface is taken into con-
sideration. For example, in the case of machined surfaces, traces
should be taken in the direction of tool motion as well as in the perpen-
dicular direction. Particular attention should be paid to lathe -turned
finishes at the profile through the center of the surface, because of
the non-flatness of the surface at that point. Figure 5 shows typical
"Talysurf' traces through the center of a machined surface for a

copper sample.

The traces as shown, do not represent a true pictorial repre-
sentation of the surface, because of the scale differences. These
asperities appear to be much more severe than they are in reality.
Nevertheless, the traces do provide a significant amount of useful
information and provide an excellent means for comparison of surface

finishes.

As a result of the length of the stylus travel (1.27-cm max.)
which is adjustable, and the use of the optical flat attachment, flatness
deviations can also be observed. This is due to the fact that the stylus

motion, relative to an optical flat, is recorded.

An additional feature of the "Talysurf'" profilometer is its
ability to provide a centerline average (CLA) roughness reading, by
means of an electronic integrator circuit, for any surface of certain

minimum length. Centerline average (CLA) is also known as arithmetic

15



average (AA) and runs somewhat lower than the corresponding root-
mean-square (RMS) reading. The latter gives more weight to the

larger deviations from the centerline.

Flatness measurements were made using a surface plate and
a dial indicator reading 2.5 micrometers, (0.001 inches) which per-
mitted estimation of half divisions (1.3 micrometers). The dial indi-
cator point was set at the sample center and the dial was set at zero.
With the dial indicator fixed, the sample was moved so that the point
traveled to the interface edge, reading the vertical deviation at the

center, one-fourth diameter and at the edge.

This was done at mutually perpendicular diameters. A secondary
check was made initially by holding the sample fixed and moving the
dial indicator support stand. No significant differences were observed
between the two methods. Plus readings indicated high spots, whereas
minus readings indicated low spots. Results are shown in Table I in
which the maximum values are presented. It should be noted that these
values are the maximum from a fictitious plane, i.e., the datum plane
as described in the next major section, ""Deformation Experiments."
Thus, there may occur some matching of interfaces having deviations,
which could result in a test assembly of better mating than would be
expected on the basis of individual reading. For example, samples
6

3 and 4 could have a cumulative flatness deviation of only +1.2 x 10~

meters if they fitted into each other.

16




Thermal Test Results

The material and the important surface properties of the test
samples are shown in Table I. These include roughness, Rockwell
hardness, flatness deviation and type of surface preparation. Actual

data for these surfaces are shown in Table II.

Stainless Steel 304

Figure 6 shows the results of the stainless steel interface tests.
Of interest is the large difference in conductance at the maximum con-
tact pressure. The flatness deviation of the 0.30 micrometer (RMS)
roughness samples was 1.3 micrometer, whereas the 1.2 micrometer
(RMS) roughness sample had a flatness deviation of approximate;ly 1.5

micrometer, at best, and 3.8, at worst, depending on surface matching.

Of interest is the curvature of the fine finish contact conductance
curve whose behavior was confirmed by the descending load curve.
Hysteresis could be observed for this specimen for the loading -unloading

cycle.

In contract, the coarse finish sample curve shows no hysteresis

and is almost linear.

It is of particular interest to note and compare these two curves
in Fig. 6 with the corresponding results of Clausing. The resemblance
of the Clausing results with Stainless Steel 303, for approximately the
same degree of flatness deviation, to our results is remarkable. The
importance of the approximate similarity of flatness deviation, as
opposed to a marked difference in roughness (Clausing, 3 micro-in for

hoth versus our 12 and 50 micro-in) is demonstrated well in this experiment.

10
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Magne sium

Figure 7 shows the results for Magnesium AZ31B, a widely
used magnesium a'loy. These samples, which had lathe -turned inter -
faces exhibited a rather unusual reversal of expected performance.
The coarse finished surfaces exhibited higher thermal contact conduc -
tances than did the fine finished interfaces. One pbssible explanation
would be the greater effect of a surface film on a fine -finished surface
versus that on a coarse-finished surface. Oxide films and tarnish were
visible on both sets of samples, since two months had elapsed between
machining and use. The reason for conjecture that a film will have a
lesser effect on a coarse surface finish, is that the fewer sharper
ridges of this finish will result in higher loads per unit area and cause
the film to break. Another, and perhaps more plausible, reason is
the relatively large flatness deviation for both sample pair, but that
the sample assembly may have resulted in a greater mismatch for the

poorer performance.

It is of interest to note that Clausing obtained higher conductances
for similar material having lower values of flatness deviation and much

lower surface roughness.
Aluminum

The resultant conductance versus pressure curves are shown in
Fig. 8. It is of interest to note that there was no significant difference
in the values of contact conductance for the two surface finishes con-
sidered. The results for the finer (0.3 -micrometer RMS) finish
6061 -T6 Aluminum should have been higher than for the coarse (1.4-

micrometer RMS) finish, since the former had lower values of flatness

11
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deviation. At present, no explanation can be found for this behavior.
The general shape of this curve conforms to that shown by Clausing
for 2024 Aluminum, with the conductance somewhat lower at maximum

pressure.

Copper

A test for electrical grade copper (OFHC oxygen-free, high-
conductivity copper) was performed, because the only available data
(Jacobs and Starr) indicated linear variation of conductance with load
at moderate loads, whereas, most other materials change in a non-
linear manner in that pressure region. As can be seen in Fig. 9, the
curve is not linear at low pressures, but does appear to be linear at
higher contact pressures. It is also of interest to note that no hysteresis

could be observed for this copper joint.

General Remarks

The results for specific metal joints are discussed under their
respective headings. This section discusses common-ground observa-

tions.

When conductance versus pressure is plotted on log-log paper,a
curve (as shown in Figs. 11-13) results, which is somewhat different
from earlier observed and expected results. Initially, a slope of one-
half to two-thirds was expected for elastic behavior as discussed in
another section of this paper. However, plots of data obtained in this
study indicate a definite two-regime behavior with a pronounced point
of change in slope. The exact reason for this change in slope has not

yet been defined, except to show that it possibly represents the change

12



from purely elastic to elastic-plastic defobrmation behavior. This is
discussed in the next section dealing with an experimental study of

this phenomenon.
DEFORMATION EXPERIMENTS

The three models (2024-T4 Aluminum) described in this paper
are shown in Fig. 10. The cone and hemisphere models were 2. 54 cm
(1 in.) in diameter and 1.27 cm (0.5 in.) in height. The ellipse semi-~

major axis was 1.27 cm with its semi-minor axis being . 950 cm (. 375 in. ).

The models in Fig. 10 (column 1) were placed between two
flat plates of a steel press with a piece of pressure-sensitive paper
placed on their tops and bottoms and a load P; was applied. A typical
piece of the pressure-sensitive paper appears below the models. The
blackened area is the deformed area for that particular load. After
each specified loading, another paper was placed on the model. Over
the entire range of loading from 0-250, 000 Newtons (0-60, 000 pounds),
the deformed area remained circular, as indicated by the blackened
area on the paper, and the deformed model. The diameter of this
blackened area was measured several times and an average taken,
thus leading to the recorded deformed area data in Table III. The tests

were performed at room temperature (293O K).

The height of the model was measured by a dial microme ter
placed between the two steel plates. The models in columns 2,3,4,
and 5 of Fig. 10 were subjected to specific loads, and the areas and

heights were compared to those of the previously described models in

13
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which the load was cycled. No appreciable difference was noticed and,
thus, the cycling of loads had produced little work hardening of the

models.

As soon as the data were plotted, it was observed that an
interesting resemblance existed between the published thermal interface
data and the deformation of the model. Of particular interest is that of
the area/height deformation versus loading when compared to the thermal
interface conductance as a function of its mechanical loading. Figure
11 shows data of the models compared on a log-log plot with that of
Fried and of Clausing. In an attempt to bring the data into the same

order of magnitude, the following expression was used:

le] p-p, - X [%] P=P W
where
k = conductivity of the madels
APi = deformed area of the model at load (P;)
Ypi = height of the model at load (Pi)
[Km:‘ P =P; = computed conductance of the models

to compute a representative thermal conductance. It must be strongly
emphasized that the plotted data in Figs. 11-13 taken from the Fried
and Clausing reports should not be used in computation. This data

has been shifted in magnitude for better visual observation.

It is particularly interesting that both the interface data and

the model data experience a change of slope at certain loading values.

14
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The factor that appears to cause this change of slope in the model data.
{s the dependence of the deformed area on the loading. This became
evident when the area versus the loading was plotted. The contribution
of the model height ver sus loading did not undergo this sudden change.
This critical point of loading at which the slope changes shall, hereafter,

be designated P.p for the interface data and Pgp for the model data.

As can be seen from Fig. 11, the values of P71 and Py do
not coincide. This might be partly explained by a temperature depen-
dence. In comparing P.Mm With Peg of Clausing, it is to be noted
that the models were at 293°K (70°F) while Clausing reported mean
interface temperatures of approximately 386° K (234°F) for eight
interfaces. Figure 12 is a plot of the data reported in this paper for
6061 aluminum and the computed model data. This mean interface
temperature (TM) was approximately 301° K (82°F), this value being
the average of all the T, and T, values of interface. Since for this
sample T,, was near that of the model temperature, it appears that
the slope change at P.p is nearer the value of that of the models P M
than the corresponding Clausing data. However, this comparison is
not totally valid since the metals are different. This leads to the question
of whether P 18 dependent on the mean interface temperature. 1f
P, is attributed to the changes of the physical properties of the metal,
it would appear reasonable that its value should be lower for higher

mean interface temperatures. Thus, it would appear that

Ky of (P af (7= ) (2)
m

15
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If all the load values of the deformation models are divided by
the corresponding deformed area, pressure values are recorded which
are consistently near the yield strength of the metal, as can be expected

for permanent deformation.

It seems that there are other factors which influence P 1
for the Clausing data. If the eight data groups are plotted, then P g
appears at different load values for each specimen. This is partly

shown by two curves of Fig. 11.

When all the eight samples of 2024-T4 Aluminum values are
averaged and plotted, Fig. 13 shows that the two-slope regime is
again evident. As can be seen, this corresponds to the included data

for the models.

In order to study the functional relationship of the curves a
computer program for best fitting the data to an equation was formed.
This equation corresponds to the form presented earlier and is
h=A+B P®. The data from Clausing, data reported in this paper,
and the deformation model data show similar values of the exponent
¢ both before and after the change of slope. The values of A/Y, h,
A, B, do not coincide because the data used for the best fit curve were
of different units as reported in the respective reports. On Figs. 12
and 13, only the functional notation has been shown for comparison.

The best fit curves are:

1. Model data '
A .
7 -32.90 + 0.57 PO e

from P = 0to 10,000 pounds.

16
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1.

T - -37.47+3.03x107* pl-34

from P = 10,000 to 60,000 pounds,

where
A = deformed area in inches?
Y = deformed height in inches
P = load in pounds

2. 6061-T6 Aluminum (Fig. 12)

2 0.09

h=9 13x1072+1.17x107> P

from P = 10.2 to 419 p.s.i.

hel14x107+7.00x10°2 P!

from P = 419 to 1,117.0 p.s. 1.
where h is given in BTU /hr ft? °F .

3. Average data of Clausing for eight samples
of 2024-T4 Aluminum

0.91
h o= 35.41+7.59 pO 7

from P=10.4 to 67.0 p.s.1i.

h = 168.1+2.14 pl'l()

from P=67.0to 986.0 p.s.i.
where h is givenin BTU/hr ft? °F.

CONCLUSIONS

The importance of the flatness deviation effects on thermal joint

conductance has been demonstrated.
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The proposed models, based on the elastic deformation relations
of Hertz appear to provide an approach to understanding the heat
transfer mechanism. This is represented by the approaches of

Clausing and this paper.
Better surface definition methods are required.

More experimental data of suitable accuracy is needed to arrive at

(a) semi-relations and (b) statistical correlation.
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68 9 210
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7785 1130 27451
4112 596 13722
1095 159 5482
T698 1117 21987
131 18 1999
219 31 M
1095 159 5282
2193 318 8071
5485 9 17244
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3340 - 484, 12875
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AddVIdadta. Aha

DEFORMED AREA AND HEIGHT OF
MODELS AS A FUNCTION OF APPLIED LOAD

Model _ Load Area Height
' meterg?

kilonewtons  kilopounds x 107 Inches  millimeters  inches
All Models 0 0 0 0 12. 700 . 500
Cone .+ 445 . 100 . 107 . 002 12,421 . 489
Cone 1,335 . 300 . 324 . 005 12, 294 . 484
Cone 2.224 . 500 . 636 .010 12,065 . 475
Ellipse 2,224 4500 1. 140 .018 12,598 . 496
Hemisphere 2.224 . 500 1.265 . 020 12,624 . 497
Cone 3.559 . 800 1.140 .018 11.938 . 470
Cone 5,338 1,200 1,534 . 024 11,735 . 462
Cone 6,672 1.500 2,027 . 031 11,582 . 456
Ellipse 6.672 1,500 2.634 . 041 12, 497 . 492
Cone 8.896 2,000 2.588 . 040 11,481 452
Hemisphere 8.896 2.00 3. 426 . 053 12, 497 . 492
Ellipae 11,121 2.500 3.973 . 062 12,370 487
Cone 13,345 3,00 3.694 . 087 11,024 , 434
Ellips¢ 15,569 3. 500 5.451 . 084 12,319 , 485
Cone 17.793 4,000 4.560 . 071 10. 693 . 421
Hemlisphere 17,793 4, 000 6.936 . 108 12,319 . 485
Ellipse 22,241 5,000 7.946 123 12. 090 . 476
Hemiaphere 26,689 6,000 9,813 . 152 12.167 . 479
Cone 31,138 7.000 7.240 112 10,033 . 395
Ellipse : 33,362 7.500 12,067 . 187 11,862 . 467
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TABLE 111

(cont. )
Model Load Area Height
kilonewtons liilopounds '?ff 853: ‘inches * millimeters inches
Cone 44, 482 10. 000 9.810 152 9.601 .378
Ellipse 44, 482 10. 000 14, 234 . 221 11,557 . 455
Hemisphere 44, 482 10. 000 15,329 .238 11.887 . 468
Ellipse 55,603 12. 500 18, 241 . 283 11, 252 . 443
Cone 66.723 15, 000 15,328 .238 8. 560 .337
Ellipse 66,723 15. 000 23,430 .363 10, 922 . 430
Cone 88.964 20. 000 23,155 . 369 7.595 . 299
Elipse 88.964 20. 000 28,199 . 437 10, 135 .399
Hemishere 88,964 '20. 000 31.142 . 483 11,125 . 438
Cone 111,206 25. 000 34,071 .528 6.731 .265
Ellipse 111,206 25. 000 37.826 . 586 9.347 .368
Hemisphere  111.206 25. 000 40.677 .631 10,643 419
Cone 133,447 30. 000 42,888 . 665 6.020 . 237
Ellipse 133, 447 30, 000 47, 480 . 736 8. 458 .333
Hemisphere 133, 447 30.:000 48,071 . 745 10.109 .398
Cone 155, 688 35. 000 54,806 .849 5. 385 212
Ellipse 155, 688 35, 000 59.981 . 930 7.595 .299
Hemisphere 155, 688 35. 000 58,013 .899 9.550 .376
Ellipse 177.928 40. 000 70,077 1. 086 6. 756 . 266
t{emisphere 177.928 40, 000 67,477 1, 046 8.992 . 354
Hemisphere 200.170 45. 000 78. 413 1.215 8. 433 .332
Hemisphere 222, 411 50. 000 90,174 1. 400 7.976 .314
Hemisphere 266,893 60. 000 123.948 1.921 7,163 . 282
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Fig. 2 THERMAL CONDUCTANCE APPARATUS WITH SAMPLE
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' ABSTRACT

The anoaratus usec¢ in obtainine evperimental results of

thermal contact concuctance for metallic joints ranginc in

surface finish from 5
Line Averace) =ith co

cmz (1n70 pei) ie des

or more than 200 micro-inch CLA (Center
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improve measurement a

Aluminum 256. Combinations of these
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titial meterial, 1. e. hiesh vacuum
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n heat losses and the attempts made to

ccuracies are given.
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INTRODUC TION
Most of the electronic equipment located in the Saturn IB and V
vehicle instrument units will be directly mounted to liquid cooled panels
(cold plates) which will serve as sink for the heat generatéd within the !
components (Fig. l)g‘ Since the instrument unit is designed for unpressur-
ized operation, theré mn be no convection cooling of the components
:’!urmg the flight mxssion. .
‘ Although thermal radiation is unaffected by a vacuum environment.
_ the heat removal by radiation is difficult to control because of changing
and unpredictable environmental temperatures.

Thus, conduction can be consider.ed the primary'cooling mode for the
components; i.e., all excessive heat must be transferred across the joint
between the bottom of the component-housing and the face of the cold plate. '

The described configuration of component mounting creates the problem
of determining how much resistance the junction of the component and '
cold 'plate, referred to as the joint, will offer to the heat flow from the
component to the cold plate.

While the conductivity figures of solids are sufficiently established to
predict heat flows within these solids, very little is known about the
thermal conductance between two contacting surfaces in a vacuum. A
_literature survey yielded only a few articles that were close enough to
thié problém to be considered more carefully.

The papers selected for evaluation (Refs. 1 and 2) *still lacked the infor- V
_n;ation necessary for Saturn application. Reference 1 included contact
pi'essures to 24 N/ cm? (35 psi), while Reference 2 contained information
about higher cont.act; pressures but reported only for joints made up by

similar metals,

#Numbers in parentheses refer to similarly numbered references
in bibliography at end of paper. 4




In typical Saturn applications however, contact pressures of approxi-
mately 700 N/ cm? (1020 psi) on dissimilar light metal surfaces with
finishes between 0.7 and 5um (30 and 200y in.) CLA are expected. There-
fore, it was decided to gather the necessary data for contact conductance

by experimental mgans.
A

Basic Considerations

1. Thermal contact conductance in a vacuum is primarily a matter of
metallic contact between the surface asperities. To establish a vacuum
level that effectively limits the gaseous conduction to an extremely low
percentage, molecular gaseous conduction was evaluated at atmospheric
pressure and a vacuum pressure of 1.33 x 10-% N/ m? (10-4 torr).
A maximu'm gap distance of 0. 00025 cm was assumed, utilizing the
proficorder readings shown in Figure 2, to permit evaluation of the molecular
mean free path distance. It can be shown (Ref. 3) that at atmospheric
‘pressure and 288°K, the molecular mean free path is 6.63 x 10"% meter;
at 1.33 x 1072 N/ m? (10" torr) and 288°K, the mean free path is

50.4 x 10°2 meter. With the maximum gap assumed, molecular collisions
are very minimal.

Gaseous conduction at atmospheric pressure between two parallel plates
was determined as 998 watts/ cm°K, whereas at 1. 33 x 10°% N/ m? (10-% torr)

the conduction is 1.63 x 10-% watts/ cm °K.
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i
Vacuum therr\nal conductance values at 1.33 x 102 N/ m? (1074 torr)
are on the order of 0.1 watt/ cm®K. The effect of air conductance upon
the resulting t.hermal conductance values will be less than 0,002 per cent.
2. The total heat élow. i. e. the amount of heat per unit time ﬂowing

across a mounting fpint, is given by
. i

Qj.-: he Atj * A (watts) (1)
where | Qj = heat flow (watts)
‘ . watts
h = conductance constant of the joint - === 0/
cm? °*K

Atj = temperature, difference across the joint (°C)

A = cross sectional area of joint (cm?)

For the design of electronic equipment, the temperature rise Atj is the

primary factor:

atj= 3 (*C) (1a)
h* A

The only unknown in this equation is the term h, for Qj is assumed to

be identical with the power dissipation of the component and A is the cross

sectional area of the joint.
In the term h, all conditions of the joint, such as surface roughness,

flatness, contact pressure, and presence of an interstitial layer, are

combined.

Solving equation 1 for h yields:

h= 9 watts , (1b)
ati A cm® °K
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From Figure 3a and 3b, it can be seen ‘that the tempera.ture drop
Atj and the surface area A can be measured d1rect1y. The heat flow Qj
across the joint can be determined by measurmg power input (electric)
or measuring the temperature drop along a prumatic homogeneous
solid with a precisely known conductivity constant k.

The latter method of measuring temperature difference in a prismatic
solid for the determination of Qj was used for the 'f‘ollo'wing reasons:

1. Calculation of thermal conductance across the interface
assumes an even distribution of heat flow. To attain even distribution, it
is necessary to insure parallel flux lines in the samples. The fluxmeter is
used as a linearizer to insure parallel flux lines as they enter the lower
sample. _

2. Repeatability from test to test is desirable and will permit a
more reasonable comparison of data. With external radiation control, '
identical temperature differentials in the fluxmeter will result in identical
heat flow values.

3, Utilization of the overall testing coneept where Atj is determined
by calculation requires an accurate meagsurement of heat flow. The fluxmeter
method of determining heat flow seemed to be more accurate and desirable
because it permits heat flow measurements to be made close to the test
joint, For this purpose a second basic term, the conduction within a solid

prismatic body, had to be introduced.

- Qs= k° A-AOtg : watts (2)
L

where Qs = heat flow normal to the cross sectional area (watts)

k = conductivity of the solid X238 '

cem*K
Ats = temperature differential between two points (°K)
L = distance between these points (em)
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Again referring to Figure 3a, it is obvious that bas,ically the mating
solids can aervé as the "standard' column for determiﬁ'ing Qs. However,
a great variety of materials was planned to be tested with varying and not
too well established conductivity values k, so a standard column was

introduced as shown in Figure 3b.

This column was a piece of Armco-iron, chosen because it is a highly pure

material with a relatively low conductivity providing a high temperature
gradient. A question was raised about the accuracy of the Armco-iron
conductivity. Even though published data were used in the calculations,
conductivity of the Armco-iron will be verified by test. Both samples and
the standard (in the following called ﬂuxmeter) have the same circular cross
sectional area. If no lateral heat losses occur, the flow Qj must be equal

‘to the flow Qs.
Qs = Qj (watts) (3)

Substituting Qs for Qj in equation 1b yields

h = Qs ’ watts (4)

Atj+ A  cm? °K

This equation presents the basis for the construction of the test

apparatus.

Test Apparatus

The three main parts of the test apparatus are the test fixture, instru-

mentation, and vacuum system, as shown in Figure 4.

A. Test Fixture
Tho teat fixture as shown in Figure 5 was constructed of two flat plates
held together by three steel rods, a pressure bellows mounted to the

bottom plate, and an adjusting screw in the top plate. The use of a bellows
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was recommended by E. Fried (Ref. 1) for convenient changmg of the con-
tact load without disturbing the vacuum. Going from bottom to top (in the
direction of the heat flow), the central or actual measuring column con-
sisted of the main: heater, the fluxmeter, lower sample, upper ‘'sample,
cooler, and load cgll

All contacts, where a low heat resistance was desired, were lapped
and filled with high vacuum silicon grease; these were the joints between
(1) heater and fluxmeter, (2) fluxmeter and lower sample, and (3) upper
sample and cooler. ’

To reduce the lateral heat transfer from or to the center column by
radiation, an improved radiation shielding device was provided. The
tendency has been for other experimenters to use a single shield with
an encompassing heater. This limits the vertical temperature matching
or nulling character1st1cs of the radiation shield.

The radiation shielding device is unique because of its ability to reduce
the radiation losses in six discrete levels of the test column. Gold plated,
eluminum rings bonded with graphite cloth heating elements were each
controllable so that mating the temperatures of the rings with those of
the column would reduce radiation to an insignificant rninimum.

‘It was learned from previous tests that the rings influence each other
by a "mirror" effect on the column; therefore, separating disks of fiberglass
were introduced to serve as nradiation heat baffles.'" The diameter of the
cylindrical column was 3.8 cm (1.5 in.), the length of the fluxmeter was

8.2 cm (3.25 in.), and the length of the samples was 1.90 cm (0. 75 in. ).
B. Instrumentation

As previously shown, temperature measurements throughout the test
fixture were very critical. The problems associated with accurate
temperature measurement became apparent as the test apparatus design

progressed.
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Noting Figuf'es 5 and 6 will give some insight as to the complexity
of the thermocouple instrumentation. Several of the more important
factors considerecli during instrumentation of the test fixture are described
and the basic reasﬁn given for careful consideration:

1. Thermocoép}e instrumentation was considered the most critical
factor in the test f¥xture design. The calculation of Qs {equation 2)
utilizes a Aty measured at two spéciﬁc levels shown in Figure 5. Iu
addition to providing the basis for determining h, i.e. with the calculated
Qg = Qj (equation 3), those thermocouples located concentrically around
the test column vertical center line were utilized to assist in monitoring
and .reducing lateral heat losses.

2. The lateral heat losses were reduced to a negligible quantity by the
use of the guard rings (Fig. 5). The temperatures of the guard rings were
continuously monitored during tests and adjusted to insure that the tempera-
ture differenc;.a between the test column surface and the inner surface of the
guard rings was held to less than 40 microvolts or approximately 1°K.
Controlling the temperature differential to 1°K or less will reduce the
radiation losses from the test column to a value of approximately 0. 002
watts or 0,007 per cent of the input electrical power. This is believed to
be a negligible ‘quantity since the effect upon the calculated conductance
will be minimal. To further insure compatible temperature readings,
thermocouples on the test column and the guard ring surfaces were cemented
in place; i.e. identical mounting techniques were used,

Monitoring and adjusting the guard rings will be eliminated when the
automatic guard ring controller is fabricated. An electronic circuit has
been designed to compare the outputs of two heat sensors (one on the test
column and one on the guard ring) and then to adjust the power input to the

guard ring to null the readings to less than 1°K difference.
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3. The initial group of thermocouples used in the test program were
calibrated and found to deviate less than 0.1°K from NBS standards. All
thermocouples to date have been from the same manufacturer and, to the
best of the authorsl"“knowledge, from the same material batch; therefore,
their accuracy is cé)risidered to be adequate. All reasonable precautions have
been taken to insure temperature measurement accuracy.

4, Determination of the temperature differenfial -(Atj) across the joint,

i, e. between the mating surfaces of the test samples, was accomplished in
the following manner.

Thermocouples were inserted in the samples in the same pattern shown
in Figure 7, an average measured distance of 0.16 cm from the test surface.
This average was obtained by X-ray and measurement under a microscope.

A temperature differential from the thermocouple to the test surface could
be computed with the previously calculated heat flow (watts), the measured
distance L from the thermocouple to the surface, the known cross sectional
area, and the published cond\}ctivity of the test sample. This value was
then either subtracted from the measured temperature for the lower sample
or added for the upper sample to obtain the surface temperatures.

A question was raised concerning the placement of thermocouples so
close to the sample test surface. A statement by the author of Reference 2
" indicated that the thermocouples could be within the area of constriction
resistance. That is where the heat flow lines in the material are being
directly affected by the metallic contacts.

To verify or disprove the procedure being used as described above, two
samples as shown in Figure 3a will be prepared. After completion of the test,
temperature measurements will be graphically plotted as sahown in Figure Ja,
and the Atj obtained from this plot will be used to calculate h. The variation
of the h with that calculated from using the short samples will be indicative

of the error introduced by thermocouple location.
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For ease in fixture maintenance and changing of s.ax:;ples. a rotary
vacuum feed-through switch is utilized (Fig. 7). Thermocouples from
the column were s‘\ioldered to the switch points inside thg vacuum chamber.
A single thermocoilple was used to reference the switch to an ice-bath
'~ junction outside ﬂé vacuum jar. This technique permitted a complete
thermocouple circﬁit to exist between the measuring point and the
potentiometer. |

These four points are considered to be the most significant in the

instrumentation of the test column.

Experimental Program

An experimental program was set up according to the design concept
of cold plates to be used in Saturn application (Table 1).

At the iméeption of the testing program, the prime material under
consideration for the cold plate mounting surface was 6061-T6 Aluminum;
therefore, the colder (upper) saniples were made of this material in an
attempt to simulate cold plate operation.

Cast alloys such as Almag 35, Mag AZ91C, and Aluminum 356 were chosen
for the hot (lower) samples due to their extensive use in Saturn IU electronic
components. |

Table I shows test run 6 with an interstitial layer. A more elaborate
testing with interstitial layers will be carried on as shown in Table II.

Also the behavior of soft foils, such as indium (Run 14), will be studied

separately.
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Tect Results

The primary purpose of this experimental program has been to
obtain values of thermal contact conductance between mating metallic
surfaces in a vacuum envirorment, This data will be utilized in
Saturn Instrument Unit electronic component design and evaluation.
The testine procram as outlinedlin Table 1 & 2 wae scheduled to
obtain data on representative materiﬁls currently beins used in the
Aesirn of Saturn 1,U, components.

It ~as necessary to verifv the operational accuracy of the
test apparatus before an ertensive testine prorram was undertaken,

’
The first test runs, presented in firures 8, 9 and 10, were per-
formed with careful monitorine of the internal temperature measure-
ment points. Test Run 1, performed on lapped samples, ras run to
evaluate the control capabilities in terms of maintainin~ parallel
heat flux lines throurhout the test column.

To assist in the evaluation of apparatus accuracy, a com-
nuterized data reduction program was employed. The solution of
Equation 4 was prorrammecd permitting timely review of test data.
Placement of thermoocouples as shown in Fipure 7 permitted & num-
ber of contact conductance values to be obtained utilizing the
computer program,

Reviewine these results showed a spread in the calculated con-

ductance of * 57 at low pressure and ¥2,5% at high oressures.
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Lower contact pressures, on the test samples, result in larger
temperature differentials (i.e. lower contact conductance) across
the test joint, 1In the case of flat samples, this is an indication
of the minimum microscopic contact area., Wherce the samples are not
flat, greater differcntials will occur, indicatimg a minimum of
macroscopic contact arca.

It must be noted that the spread in contact conductance was re~
duced as the pressure was increased. This is an indication liat the
test apparatus has the inlicrent capability of permitting parallel
heat flux lines to be established in the test column.

The constriction resistance is influenced by three main factors:
contact pressure &number of microscopic points of contact), the
flatness and the type and finish of samples.

At low contact pressures, the coastriction reslistance is higher
than aé high contact pressures. LUue to the ligher constriction
resistance, greater temporaturs differences will occur across the
T

at the joiat,

measuring plan

¢

For higher contuct pressure, the constriction resistance wiil
be smaller, due to morc wmicroscopic points of contact. This will
result in increascd uniformitv at the temperature measuring plane,
thus a smaller spread in contact conductance.

Repeatability has been shown in figure 9 to be within 1-2% of
two successive runs. Tiis also is an indicatioa that soerational
accuracy, i.e., evaluatrion of machined surfaces for design appli=~

-

cation, is satisfactory.
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Data presented in figures 8, 9 & 10 was obtained from samples,
(RUNS 1-5), which had not been mated until assembled in the test
fixture, Samples werc machined, wrapper and stored for periods
up to four months. Oxide coatinns which may liave formed during
this time pe;iod were not distrubed. This was intentional due to
the possiblc;storagc times for Saturn Components.

To obtain a base for evaluation of test results, samples for
kun 1 were lapped to less than 0.07 mCLA. Lapped samples pre -ided
the close simulation to optically flat surfaces which will generally
provide the greatest macroscopic contact area, hence the highest
contact conductance,

Results from test run 1, with hysteresis points, are shown in
figure 8, Compared to the results shown from the Reference 2 report,
it can only be stated that the values are grcater in magnitude. This
difference could possibly be traced to difference Iin materials, sur=
face finish measurement technique and even to the testing method
used for obtaining thesec results. Those items indicate the diffi-
culty to be experienced in comparison of data from otha experimenters
and even the data obtained in different runs from the same test
apparatus.

The data from test run 2 ran contrary to published data which
showed the finer the surface finish, the greater the contact con=
ductance. To support the validity of the data, profilometer read-

ings (Figure 2) taken prior to application of pressure indicated
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an apparent flatness deviation of 0,002 em. Macroscopic contact
areas show ,in only three points in fipure 2,

tieasurements taken after the application of contact pressure

42 C o . .

exceeding 700 N/cm” indicated that the overall flatness deviation
of .002 cm in a diameter of 3.8 cm was not affected., Some minor
microscopic cyanges werc noted, i.e., asperities were reduced in
overall height indicating the anplication of pressure.

Results for Runs 3 & 4 presented in fipure 9 represen: data
taken on samples with a better relative flatness than the samples from
Run 2, Proficerder mcasurements on these samples showed no appre-
ciable flatness deviatica cven thouph the surface roughness was
near twice that of Run 2 Samples.

It is a generally accented fact after reviewing published data

1

that the greater th

3

surface roumoness the less the conductance,

{

.sh as the sole paramcter of compari=-
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This assumes the surfac
son, ilowever reviewing tie veosults from the Run 2 - 3 & 4, sur-
face flatness has a greater anoharent affect than ¢

ntation has not been dong

;
3
©w
7
i
@
“
(a4

P
3

1
[N
ol
]

finish, Sufficient cixperi
the magnitude of the effect of surface flatness upon the contact

conductance ,
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Runs 3 & & were made utilizing identical materials, finishing
processes and relative flatness. These runs were made to verify
repeatability characteristics of the test apparatus. As indicated by the
results shown in figure 9, a variation of less than 5% was found to
exist between Runs 3 & 4.

Run 5 was performed primarily to determine the cliange in contact
conductance with repeated cycling of pressure. This was intended to
simulate the removal and remounting of R-ASTR components on the IU
conditioning panel, To {deally simulate the above, the samples should
have been physically separated, rotated 1-2 degreces and pressure reapplied.

Mounting bolt area characteristics are such that the macroscopic contact
should remain the same however the microscopic contact arca cannot be
repecated with a removal and subsequent remounting to the same location. In
this case the conductance will not vary from the initial value shown in

figure 10.

Conclusions:

The explanation of the physical naturc of the thermal contact con=
ductance is beyound the scope of this report. Since the primary purpose of
this experimental progran was the determination of desipgn data for Saturn
vehicle components, review of microscopic effects upon contact conductance
will be suggested for a future progran.

Toest data shown in Figures 9 & 10 have indicated that the magnitude
of thermal contact conductancc attainable with normal machined surfaces in

the Saturn program will not create excessive temperature differeantials between

the conditioning pancl and the component mounting, surface. For design purposcs,
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a heat load of 10 watt per mounting bolt area (5 x 5 cm) has been
assumed, Under this condition, utilizing the contact conductance
from Run 2 @ 350 H/em” of 0.7 watt/cmz-cK, a temperature differen=~
tial of lgss than 1° K would exist., For component thermal design
purposes, this differential can be neprlected in most cases,

Due to the discrepancies noted for the Run 2 data, aprlication
of these results cannot be used for desien purposes. A valid
evaluation of surface flatness must be undertaken with a well
defined program tc determine the relationship of flatness deviation
to contact conductance. A program of this nature will require a
review of the methods used for measuring temperature differentials
across the test joint.

Data obtained from this experimental program cannot be utilized
to determine an average temperature differential over the entire
éomponent mounting surface. This is due to the lack of knowledge
concerning the average contact pressure., It is to be assumed that
the only definable contact pressure is directly adiacent to the
mounting bolt.

Prior to Runs 2 & 3 profilometer readings were taken (figure
2, shows Run 2) to obtain some insipht into the macroscopic and
microscopic characteristics of the test surfaces. Dleasurements
made after a test cvcle did net indicate majdr changes in the
surface characteristics,

It was concluded that surface changes could not be evaluated

with profilometer measurcments. This conclusion is supported by
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‘the work of Fenech and Rohsenow in Reference 4.

Test runs to date (1-5) and the remainder scheduled in Tables
1 and 2 wili not permit full comprehensisn of the microscopic affects
of the surf;ce upon thermal contact conductance., tany parameters
cannot be pro;erly evaluated with the relatively few test runs
scheduled.

A greatly‘expanded propram coordinated with other experimenters
is necessary to fully evaluate the mechanics of thermal contact con=
ductance in a vacuum environment.

The following itcms are considered the major areas of interest
to be studied in a future program:

1. The relationship between surface characteristics,
(i.e., flatness deviation, surface finish) and contact con=
ductance. 7o properly comparc test data, a éommon basis
for defining surface characteristics must be apreed upon,

To evaluatc flatness deviation and surface finish, each
must be taken scparately and then combined in a closely
controlled test.

2, Investigation of the problems involving the
standardization of test samples, i.c., diameter, length,
surface measurement technique and material thermal prop=
erties (thermal conductivity). Ideally, a single source
to supply samples would be a good solution to the prob=
lem of discrepancies in materials and methods of surface

MAARMILUMONER .
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3. Temperature measurement techniques and data
evaluation procedures should be stanradrized to the
greatest extent practicable,

4, Evaluation of the affect of noa-metallic
interstitial materials upon the conductance should
be thoroughly investinated,

5. Variation of conductance when mating simi=-
lar materials and dJdissimilar materials must be deter-

mined.
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until variation in conductance is negligible.
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TEMPERATURE MEASURING

°C
JOINT _Z POINTS
© 0o 0 0o E °o o /el " '
| —> HEAT FLOW
T ]
L
T s 1 N
t_—fA |
:
]
L— cm
a.
o STANDARD ’
C 2OLUMN JTEST JOINT
\i\
| t {SAMPLES
b
T Lo
Tt At

P cm

. 2: Temperature Cradient due to a Steady Heat Flow

a. In two samples of the same material.
b. In a Standard Column and two samples.
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1.

2.

Thermal Jeint Conductance

J.M.F. Vickers

This work is proceeding in several areas with which the Jet Propulsion
Iehocratory has direct contact:

i. Research at the University of Illinois where the author has been
the technical monitor for NASA on the grant.

i1i. Work in-house and with consultants on the theoretical analysis of

actual joints.

311. Experimental work in-house which is still in the stage of development

of equipment.

iv. Work in-house on the correlation of available information.

The work at the University of Illinois was initiated by the Section
during the summer of 1961, when Arthur Clausing was a summer employee.

He did a literature search during this period, and when he returned to
University of Illinois persuaded his advisor, Professor B. T. Chao,

that he should work in this area for his Doctoral Thesis. This has been
sponsored by NASA on a research grant for two years. During this periocd,
Dr. Clausing has completed his Ph.D., and a report has been issued

by University of Illinois.(1)

This work has been entirely concerned with the determination of the

variation of the joint conductance with nominally uniform contact

pressure for various materials; that 1is, a columnar apparatus has been

used, with contact pressures up to about 1,000 psi. The most important
finding has been that the joint conductance is more dependent upon the
variation of the surface flatness than the surface roughness for thick

or columnar specimens and that, using the Hertz equation to calculate

the contact areas involved, it was possible to correlate the data very well.
The metals used initially were brass, (Anaconda Alloy 271, a leaded brass,
35.5 Zn, 3% Pb.), magnesium AZ 31B, stainless steel 303, and aluminum 202k Th.
A representative drawing of the test equipment is shown in Figure 1, and the
plots from the raw data for a low contact pressure and a high contact pressure
for lapped aluminum specimens in Figure 2. The results obtained for lapped
aluminum for various contact pressures is shown in Figure 3. Figure 4 ghows
some results for brass; here is the total equivalent flatness deviation
and by, the radius of the constriction regions. It will be noted that there is
a considerable difference in the curves, increasing for increasing mean inter-
face m, but not directly affected by the flatness deviation to
constri fus ratio St which is not varying directly with the increase

- ‘,'\m 8
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D= . “
in jJoint conductance. The reason for the significant change associated
with T, is that the change in interface temperature involves a significant
change in the value of the mean thermal conductivity of the material, and
of the modulus of elasticity. When these are taken into account a remark-
able collapse of the data points is obtained. The collapsed data for
aluminum is shown, rather than brass, but the curves have similar shape

and degree of conformity, Figure 5. The first thing to note is that the
curve drawvn is not the best curve through the points, but is the theoretical
prediction for the material concerned. Actually what is plotted is the
ratio of the mean thermal conductivity of the material to the interface
conductance, h, that is, AL , divided by the radius of the macroscopic
constriction regions (b ) agafnst G = (R/g,, )f ﬁ/,( :))B the ratio of
the product of the cont&ct pressure and the radius of the macroscopic
constriction regions to the product of the modulus of elasticity and the
total equivalent flatness deviation. In the ordinate, AL, may be
considered as the additional length of the contact members which would
produce the same resistance as the existing interface. Since

= . ‘4,,\ “ AAT
4 %f) N S —”—Z')—‘

4. AAT

But- @ = I whe AL: Logd.

The reduced results for all the materials tested is shown in Figure 6,
vhere it will be seen that good conformity 1s obtained with the theoretical
curve over most of the range for all materials. It should be noted that
wvhile there are some bad points for stainléss steel and aluminum at low
pressure, and that these two materials also lie off the curve periodically
at higher pressures, that points also exist for these two materials in all
regions which lie exactly on the theoretical curve.

Work is still continuing on this project to attempt to find the reasons

for the discrepancies which exist, and also to investigate the reported
directional effects when two dissimilar metals are in contact. A recent
progress report in this area indicates that for aluminum-stainless steel
contacts there is a strong directional effect, that the contact resistance
is a function of the flux involved, and that the dependence, that is whether
the contact resistance goes up or down with flux, is also directionally
dependent, and, naturally, as the flux goes to zero, so does the directional
effect.
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Some related work, under Professor Boresi of the Department of
Theoretical and Applied Mechanics, University of Illinois, (under the
same contract), relates to the effect of thermal strain produced
by the temperature gradients caused by the macroscopic constriction.
This work was initially undertaken as a three-dimensional, axisymmetric
problem in thermoelasticity, but has proved intractable to date.

More success is presently being obtained in the plane problem, which
is mentioned in the progress report as proceeding hopefully towards
the elimination of truncation and roundoff errors. The plane case
should be applicable, at least qualitatively, to the axisymmetric case.

It is felt that much of the available information, except for that of
Barzelay et al (2) at Syracuse, and one or two papers in vacuo (3), is

not directly applicable to real joints. Almost all of the work has been
done with a "nominally uniform" contact pressure, that is with colummar type
apparatus, between maxima of 35 psi contact pressure in one case, Fried

and Costello (4), and 3000 psi in the highest case, Cordier (5).

In actual practice what is needed is the behavior of actual bolted joints,
where the contact pressure varies from a maximum under the bolt head, out

to zero (or even separation) between the bolts.

Some theoretical analyses have therefore been carried out at JPL to try
to connect up the type of work done by Chao and Clausing with the type
of problem encountered in a spacecraft.

The first item was done by Professor Keith Newhouse, (6) while spending

a summer with JPL from the University of Nebraska. He analyzed the effect
of sources of heat of finite size distributed on one side of a thin plate
wvhich was radiating, on the other side, to space. This indicates the
relative importance of joint conductance to plate resistance in the case
of a module attached directly to its radiating surface. The converse

type case, of the plate receiving radiation and feeding into a finite sink
is also  interest, but has not been studied as yet by Newhouse.

The second area studied was by Dr. T. J. lardner, previously serving his

Army duty at JPL, and now a consultant to JPL vhile an instructor at MIT (7).
He took the case of two cylinders, Figure T, with a constant input heat flux,
and a constant heat rejection temperature. The joint conductance was
considered to have a fixed value at the axis of the cylinders, and to fall off
linearly to zero, or to a fixed value, at the periphery, the extreme case

of this being the constant joint conductance out to the periphery.

The results for various slopes of joint conductance vs. radius are
shown in Figure 8, where it can be seen that as the slope increases from zero,
(1.e. constant joint conductance), the temperature discontinuity at the interface
increases. This is also shown in Figure 9 as a function of the slope.




.

The ratios of the temperature discontinuity at the interface on the axis
to that for a constant joint conductance are shown in Figure 10, as a
function of the ratio of the product of the flux and the axial length

of the cylinders to the product of the thermal conductivity and the
rejection temperature. In Figure 11 the same ratio 1s plotted against
the ratio of the flux to the product of the maximm joint conductance
and the rejection temperature. It will be noted that in the case of the
temperature discontinuity for C = 1, (that is the joint conductance
falling to zero at the periphery), the temperature discontinuity is at
least twice that for constant joint conductance, and for smaller values
of C this is reduced. It should be noted that the total joint conductance
varies in this analysis, as C is reduced in magnitude.

Other work, performed by lardner and another consultant, Dr. H. E. Williams
of Harvey Mudd College, involved the solution of the problem of the contact
pressure distribution for two plates in contact. The only work from the
literature which appeared to be helpful was that of Sneddon (8), and some
later work by Fernliind (9) and by Nelson (10).

Sneddon had taken the two dimensional case of an infinite plate loaded by

a strip of constant width, and had worked out the midplane stresses.

These are a good first approximation to the contact pressure between two
infinite plates under similar loading. Williams elaborated on this for

a greater variety of load width to plate thickness ratios for multiple

strip combinations (11). Iardner then took Nelson's results for the axi-
symmetric case, and elaborated them, using the principle of superposition to
produce the results for annular loading (12). The first of these cases 1is
shown in Figure 12, together with the axisymmetric loading configuration.

For plates which are thick relative to the diameter of the load it will be
noted that the maximum stress is small compared to the loading, but that

the contact load is spread over a radius about three times that of the
imposed loading. For thinner plates the maximum stress increases, and the
spreading out of the contact load relative to the imposed loading is

reduced. When one examines the axisymmetric case for annular loading,

Figure 13, one sees, on moving from the inner edge of the loading outwards,
that the contact pressure first increases and then begins to decrease.

It is felt that while these trends are approximately true for the actual
loading under consideration that, for a real bolt where there exists a hole
through the plate, this will be modified to have a maximum either very

close to, or coinciding with, the inner edge of the loading. This particular
plot is for the case of a load hole of the same dilameter as the total plate
thickness; that is, the radius is equal in thickness to one of the two plates
in contact. Tt is apparent that, for a thin annulus, the spreading action
is large, while as the annular width increases the additional radius involved
decreases.
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This work is continuing, with difficulties. A problem developed
with the computer program when one tried to put a hole in the plate.
Fernliind overcame the problem by masking an assumption which is not
felt to be justified; when one does not make this assumption, the
computer memory is overloaded. However an approach has just been
reached which should not lead to the computer overloading, but

no actual runs have yet been made.

Other work to be undertaken is to determine edge effects, that is
how the stress patterns are modified by the presence of one, two

or three plate edges in the neighborhood of the losding; also to

work away from the midplane so tlat one can have solutions for a

thin plate bolted to a thicker plate.

The work described above, that is the effect of uniforu pressure

on the joint conductance, can be combined with the variatvion of
pressure from lardner and Williams to predict the actual variation
of the joint conductance in the vicinity of a bolt. This can tzen be
used in conjunction with lardner's work on the effect of variabtle
joint conductance on the heat flow to predict actual fluxes through
a bolted joint, and further combined with the work of Newhouse tO

predict behavior when an jtem is bolted to a radiating surTace.

It is proposed to check some of this theoretical work with the
apparatus shown in Figure 14. Here one can check, for either circular
or annular loading, the net heat flow between plates which are either
solid or have a hole bored through them. The results can be compared
with those predicted as indicated above. This apparatus will have a
dead weight loading system capable of applying up to 10,000 psi at

the interface, which is known to be the actual interface pressure
existing under bolts in JPL spacecraft. It will, further, be capeble
of holding this loading for a very considerable period of time (7 days)
so that one can check out thoroughly the results reported by Cordier.
Cordier reported that the joint conducvance is a function of time of
application of the load as well as time of outgassing and the net load
and that this effect is further complicated by the net thermal and
stressing history of the specimen.

Some work has recently been completed in-house at JPL, in trying to
correlate all the existing data from the literature. It is hoped to

produce a report in the near future, and this will 1ist i. the references,
i11. all the information on the materials and test conditions which can

be obtained or inferred from the papers and iii. the data obtained,

plotted in consistent units throughout. It is hoped also to list the

names of people working in the field who have data on various materials
which they heve not yet published, so that those who are interested can
contact these people directly. It is hoped that this report can be up-dated
periodically (possibly once per year), and that through it JPL can act a8 a
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reasonable clearing house for informstion. It is hoped that people will
draw the attention of JPL to those papers which exist, and have been
omitted, and also that they will drav attention to their own papers,

and those of others, as they appear.

This completes the description of the work currently under way at JPL.
There are obviously many areas which are not touched on at all, but

it is felt that a coordinated attack is being developed on one of the
major problems on joint conductance, the production of a system of analysis
which will allow the experimental results to be applied to actual bolts.
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THERMAL CONDUCTANCE OF MOLYBDENUM AND STAII‘II:E.‘SS- N66 37810

STEEL INTERFACES IN A VACUUM ENVIRONMENT
by R. D. Sommers and W. D. Coles

Lewis Research Center
National Aeronmautics and Space Administration
Cleveland, Ohio

We will assume an awareness of the general nature of the problem of joint
conductance and an overall understanding of the gqualitative interaction of
various parameters such as surface roughness, contact pressure, interface tem-
perature, etc. The purpose of this paper 1s to report a series of thermal con-
ductance measurements taken on SS 304 and molybdenum joints 1n a vacuum envi-
ronment.

Figure 1 shows what the situation is at a joint of two metals. Due to the
microscopic irregularity of the surfaces, the pleces do not make intimate con-
tact across the entire apparent contact area. Based on the temperature profile
as measured along the pleces, there exists a fairly large temperature drop
across the interface. The quantity of interest is the thermal conductance h
defined as the ratio of heat flow per apparent area of contact to the tempera-
ture drop across the interface.

Figure 2 presents a schematic of the apparatus. The vacuum chamber 1s
formed by a steel bell jar in which tke pressure is maintalned at 106 torr or
lower. Variable contact pressure is cbtalned through an ailr cylinder loading
system external to the vacuum chamber. The load 1is measured by means of a
Baldwin load cell as shown in the schematic. Thefriction reliever vas a small
solenoid-activated hammer that applied two sharp raps a minute to the loading
shaft. This was an expedient that proved necessary to relieve frictlonal
forces encountered in the "O" ring seals around the loading shaft.

Inductive heating was utilized as a heating source. Excitation was of
10,000-kc freguency supplied by a 30-kw machine built commercially by Tocco,
Inc.

The heat flow was determined by measuring the axlal temperature gradient
along a piece of high purity copper and utilizing a known thermal conductivity
(ref. 1) in the one-dimensional Fourier heat conduction equation. '

Figure 3 is a photograph of the test shaft with the specimens in place.
The thermocouples used were chromel-alumel, 32 gage, peened into the surfaces
1/8 inch. The thermocouple leads were wrapped three fourths of the way around
the shaft before passing through any temperature gradients. Thermocouple out-
puts were measured with a Rubicon Portable Potentlometer (Model 2732). One
point might be made here: the general configuration is such that an auxillary
measurement could be made of the thermal conductivity of the test specimens.
Such measurements were generally in good agreement with reported values for
these materials, indicating that the instrumentation technique is satisfactory.
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Our measurements were all made in a vacuum enviromment. In order to pro-
vide some basis for comparison with values determined under atmospheric condi-
tions, figure 4 presents some thermal conductances measured by Barzelay, et al.
{ref. 2) at Syracuse University. The values shown are for a joint of stainless
steel. The curves show the typlcal dependence on contact pressure and average
interface temperature - increasing with both. For reference purposes note that
the values of h average around 1500 Btu/(hr)(sq ft)(°F).

Figure 5 shows the thermal conductance of a 858 304 joint in vacuum. The
curves have the same dependence on contact pressure and interface temperature
but are about an order of magnitude lower than the values of the preceding
figure. The difference 1s attrlbuted to a loss of gas from within the inter-
face and the consequent elimination of gaseous conduction. The heat transfer
now proceeds via metallic conduction and thermal radiation. The lowest curve
of figure 5 presents the conductance for radiation only, and we are left with
the evident conclusion that the principal mode of heat transfer is metallic
conduction.

Figure 6 presents the data for a molybdenum joint in a vacuum. These
values are about a factor of five higher than those for the S8 304 joint. Thls
is in good agreement with the relation between the thermal conductivities of
these two materials and indicates that the extent of real contact is comparable
in the two cases. Figure 7 shows the thermal conductance of a mixed joint
composed of molybdenum and SS 304. The one unusual characteristic that is im-
mediately obvious is that the conductance decreases with increasing interface
temperature. At the moment this is unexplained. One might say that this is a
reflection of the temperature dependence of the thermal conductivity of molyb-
denum, which decreases wlth increasing temperature. However, why did the
curves for the molybdenum-molybdenum joint not show this trend?

Barzelay (ref. 2) observed such a dependence for a stainless-steel =~
aluminum joint and advanced the idea that it was due to warping of the surfaces.
He also found that the conductance was a function of the direction of heat flow
for the stainless-steel - aluminum joint.

Figure 8 presents the thermal conductance for a molybdenum-SS 304 joint
with the heat flow reversed. There is a marked decrease in the conductance
values. In all fairness, 1t should be pointed out that the two molybdenum-
S8 304 jolnts under discussion are composed of different surfaces, so that not
all of the difference may be due to the change in heat flow direction. One
interesting point is the reversal of the decreasing trend when the heat flow
is from the molybdenum to the SS 304. Furthermore, this reversal occurs when
the molybdenum surface attains ~900° F. In the test of figure 7, despite an
average interface temperature of 1000° F, the molybdenum surface did not rise
much above 700° F. Therefore it is entirely possible that a reversal would
have been noticed if the test had been extended to higher temperatures.

The data for the mixed joints at the moment 1is lacking clearcut interpre-
tation, but the results of Barzelay for SS-Al and our results for molybdenum
and 88 304 reveal some coincidences that are interesting. For example, the
e nductance 1s higher when the heat flows from the softer material to the

o T A
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harder. Since in this case the softer material reaches a higher temperature,

. this may be an indication of a greater tendency to flow and improve the extent
of real contact. Tables 1 to 5 present detalls of the test surfaces and ex-

perimental measurements and are included as a supplement to the figures.

In any event our present studles are centering around these materials and

others that may form joints composed of materials of widely varylng properties.
We are also planning to extend the vacuum enviromment into the 10-13 Torr

range.
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TABLE 1.

CHARACTERISTICS

(a) Surface characteristics

- SURFACE AND INTERFACE

Surface Material Surface Surface
roughness, aresa,
p in. sq in.
Mol Molybdenum 16 0.6207
Mo2 Molybdenum . 8012
SSl SS 304 . 63940
88, SS 304 . 7850
: A%
(b) Interface characteristics
Configuration Heat-flow Apparent
direction contact
area,
sq in.
58 -8S2 551 to SS52 0. 6940
551 -Mo2 551 to Mo . 1353
Mol-M.o2 Mo:L to Moz . 6207
Mol-SS2 Mol to SS2 - 6207
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